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In analytical mechanics of nonholonomic systems an essential role is 
played by so-called transpositional relations [l-lo. 14. 21 1, which 
usually means the relations containing the operations da and 8d, with d 

being differentiation with respect to time and 8 being virtual variation. 
There are two types of transpositional relations corresponding to two 
points of view on the commutativeness of the operations d and 6 in the 
presence of non-integrable kinematic constraints. According to one point 
of view (supported. for instance, by Volterra and Hamel), interchange- 
ability of the operations d and 6 exists in all the essential coordinates 

91’ ‘*et qnr independently of the fact that a system is holonomic or 
nonholonomic. According to the other point of view {Suslov, Levi-Civita 
and Amaldi), interchangeability of the operations d and 6 exists only fn 
the case of holonomic systems. 

For nonholonomic systems, the relation 

dh, -8dq,=O (0.1) 

applies only for the generalized coordinates whose variations (compstible 
with nonholonomic constraints) may be considered as independent. The 
transpositional relations for the remaining coordinates are derived from 
the equations of nonholononie constraints, and they prove to be dfffer- 
ent from (&I). This second point of view has been generally recognized*. 

and its numerous adherents consider the first point of view as being 
erroneous IT-13 I. Hamel remarked in [ 14 1 that the accusation of error 

* Also in [ 23 1 b the relations (0.1) are assumed not for all general- 
ized coordinates. 
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is not irrefutable, and he proposed a meLhod of utilization of the trans- 
positional relations in which the first point of view dues not lead to a 
contradiction, Hamel did not, however, justify his considerations. 

The question of the transpositional. relations was clarified in [I5 I, 
where it was shown that, with a proper approach, both points of view are 
correct and are not contradictory, as had been alleged. It was explained 
that the contradiction was due to lack of definition of basic concepts, 
i, e. of the operations d&and 6d entering into the transpositional rela- 
tions, Xn fact, the quantity & is determined only on the trajectory of 
motion, while the operation S represents variations in the directions 

which are, in general, different from the direction of actual motion, ft 
is thus necessary to determine from the very beginning the meaning of the 
operations d, 6, d8 and 6d. We note that lt is sufficient to define these 

operations on an arbitrary line qi = Pi(t) of the actual or kinematically 
admissible motion, and it should be done in relation to this given Line. 
The definition of the operations d and 8 is equivalent to the prescribing 
of vector fields corresponding to these operations. 

1. Some definitions. In mechanics, the operation d represents 

differentiation with respect to time, and therefore is determined only 
for the points qi = pit t ) of the traj ectoxy of motion of the system. l&e 
correspondence can be established between the operation d and the field 
of vectors with the components q,dt, . . . . q,,dt. An arbitrary operation 
from an infinite set is understood as the virtual variation 6, for which 
the corresponding vectors are virtual displacements of the system, i.e. 
all linear combinations of m linearly independent vectors l,, . . . . la 
obtained in a cextain way according to kinematic constraints of the 
system. Thus, the operation 6 is determined at al.1 points of configura- 
tion space. 

ft follows then that at the points of an arbitrary (actual or 
kinematically ad&ssible) trajectory the operation dSis determined, but 
the operation 6d is not determined. Consequently, the definition of the 
operation d should be complemented in such a way that the operation 6d’ 
becomes meaningful. It is important to note that the operations al and 6 
may be defined arbitrarily beyond the trajectory of motion qi = qi(t), 
but on this trajectory they should coincide with the operations of 
differentiation with respect to time and virtual variatian, respectively, 
in order to maintain the validity of the equations of d’Alembert and 
Lagrange. 

There is an infinite number of ways of c~plementin~ the definitions 
of the operations d and S while maintaining their meanings on the tra- 
jectory of motion. Here, the following way will be outlined. %e introduce 
in the vicini%y of the considered motion 9; = qift) a system of curvi- 
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linear coordinates qi = qi(ul, u2, . . . , nn) in such a way that the lines 
u2 = u3 = . . . = un = 0 coincide with the trajectories of motion; the para- 
meter u1 on this trajectory is identical with time t and the planes 
tangent to the surfaces ua+ I = . . . = u, = 0 at the points u2 = ug = . . . 
=u = 

n 0 are the planes of virtual displacements of the system. 

We assume, to be specific, that the equations of kinematic constraints 
are linear and nonholonomic of the type (1.2). In the surrounding of the 
line qi = qi(t) we define 

dq, = ;+ddu,, 69, = $6u, @=I,..., m + k;lr = 1, . . . , m) 
P (1.1) 

dq, = a,, dq,, 69, = ars 69, (t = m + kf 1, . . . , R;G = 1, . . . ;m) 

Here and in the following, summations are to be carried on with 
respect to indices repeated twice, m is the number of degrees of freedom, 
k is a constant integer (0 < k < n - m), and the indices assume the 
values 

r,.s, 1 =l,..., m; i=l,..., n; j=m+l,..., n; p=m+l,..., ??2fIt’ 

a, p, h, p, Y = 1, . . . ,m+k; o=m+k+l, m-j-k+2 ,..., n 

For u2 = zag = . . . = un = 0, the operation d coincides with differ- 
entiation with respect to time, and the operation 6 coincides with 
virtual variation. According to the introduced definition, the inter- 
changeability of the operations d and 6 exists only for T = 1, . . . , m+ k; 

the displacements dqr and 64, are compatible with the constraints for all 
the values of r, except r = m + 1, . . . , m + k. 

we 

For a nonholonomic system with the constraints 

4j = ajsqs (1.2) 

introduce quasi-coordinates nl, . . . , R=+ k by means of the relations 

. . . . . 
nr = arsqs, fi, = apsqs - qp (‘I .3) 

According to (1.1) to (1.3) we obtain the following relations: 

d6qh - 6dqh = 0, db, - 6dn,, = yv+ dn$a,, d8q, - Mq,= Br:dq$qs (1.4) 

where 

rv+ = Up, 
( 

%p 
% - T 

J 
9 ha&p = &B 

cl is Kronecker' s 
(1.5) 

if%, %, 

(6, p 
symbol) -__ a. ajr- ayS aqj JS (1.6) 
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Two points of view mentioned above correspond to k = n - m and k = 0. 

2. Different forms of the equations of motion of non- 
holonomic systems and transpositional relations. Using rela- 
tions (1.41, it is possible to obtain the equations of motion in the 
form from which, in particular, the equations in quasi-coordinates of 
Boltzmann and Hamel, or the equations in true coordinates of Voronets 
and Chaplygin, can be obtained. 

We transform the equation of d’Alembert and Lagrange to the form 

(2.1) 

Substituting the first and the third of relations (1.41, we obtain 

According to (1.2 and (1.31, the variations of coordinates and quasi- 
coordinates are connected by the relations 

6q,, = bdnv, dq, = aos6qs = aoshkv, (b.avp = &.) (2.3) 

We introduce the function 

T’ (qi, k) = T (qi, hk, aasbsv&) (2.4) 

which is obtained from the kinetic energy T(qi, Gil by eliminating the 
generalized velocities 4s+ k+ 1, is+ k+ *, . . . , 4, with the use of (1.2) 
and exchanging i1, G2, . . . , ia+ k for i1, G2 , . . . , Km+ k with the use 
of (1.3). Passing to quasi-coordinates in (2.21, we have 

or, after a transformation 
(1.4) 

- 6T’ - F B,;q,b,,Gn, = l-I&c, 
0 

with the use of the second of the equations 

According to the conditions of nonholonomic constraints, it follows 
that &rs+ 1 = an,+ 2 = . . . = &i-s+ k = 0. Since the variations 6~ l are 
independent, the remaining sum results in m equations of the type 
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where 
aT’ 

q - aq, - aT’ bA, + gaoabsl. 
(I 

(2.5) 

W) 

The obtained equations (2.5) represent a compromise between the equa- 

tions of Eoltzmann and Hamel in quasi-coordinates and the equations 
Chaplygin and Voronets. 

In fact, for k = n - m the components 

vanish and Equations (2.5) coincide with the equations of Boltzmann 
HamelL4, 171. 

and 

For k = 0 Equations (2.5) become the equations of Chaplygin and 
Voronets. They are written in true coordinates and, therefore, it is 
necessary to substitute as1 = bsl = as, in relations (2.5). Hence, and 
from (1.51, it follows that yzhr = 0. 

In addition, for k = 0 the function T * becomes, according to (2.41, 

of 

the function To = TO(q,, 4i>, which is commonly used in 
equations of Voronets. In this way the equations 

d aT” . 
-7 

dt aq, 
_ aT” ail - B,.; s qr = nI1 

a4j aqj 

are obtained, which are identical with the equations of 

For nonholonomic systems of Chaplygin, they coincide 
equations of Cbaplygin [ 18 I. 

deriving the 

(2.7) 

Voronets 11 1 . 

with the known 

3. Different forms of Hamilton's principle and the trans- 
positional relations. According to Hamilton’s principle, the actual 
motion of a dynamical system satisfies the equation 

Y(8T + 6A) dt = 0 (3.1) 
1. 

where 6Tis the virtual variation of the kinetic energy of the system 
and 6A is the virtual work of applied forces. Usually, this principle is 
formulated for holonomic systems. Up to now, there is no unique point of 
view on its applicability for nonholonomic systems. Some authors (for 
instance, Appell I20 1 1 consider that Hamilton’s principle (3.1) should 
not be applied to nonholonomic systems. Others (for instance, Hamel [221 1 
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maintain the opposite point of view (Chaplygin pointed out the applic- 
ability of Hamilton’s principle to nonholonomic systems which admit a 
reducing factor). 

Hut, at the same time, a general approach to this problem is possible, 
since the applicability of Hamilton’s principle is closely related to 
the question of the transpositional relations. 

In fact, let us integrate Equation (2.1) in the interval from the 
initial state to the final state of the system. With the condition that 
the variations are zero at the ends of this interval, the expression 

(3.2) 

is obtained, which may be considered as a general formulation of 
Hamilton’s principle. It follows from (3.2) that a particular form of 
the principle depends on the assumption of certain transpositional rela- 
tions. ‘Ihe form (3.1) corresponds to the relations (1.4) with k = n - m, 

and leads to the equations of Holtzmann and Hamel, according to the 
previous considerations. 

Note. Voronets 11 1 proposed a method of derivation of the equations 
of motion for nonholonomic conservative systems starting from the ex- 
pression (using the notation of this paper) 

with the condition of interchangeability of the operations d and 6 for 
all essential coordinates. In spite of the apparent differences between 
(3.3) and (3. l), both these forms result from the same transpositional 
relations and. therefore, one expression can be reduced to another. In 
fact, assuming the true coordinates as first I quasi-coordinates, we have 

Substituting this into (3.1). we obtain expression (3.3) of VOrOnetS. 
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